Artificial neural networks: a review of commercial hardware
نویسندگان
چکیده
Artificial Neural Networks became a common solution for a wide variety of problems in many fields, such as control and pattern recognition to name but a few. Many solutions found in these and other Artificial Neural Network fields have reached a hardware implementation phase, either commercial or with prototypes. The most frequent solution for the implementation of Artificial Neural Networks consists of training and implementing the Artificial Neural Networks within a computer. Nevertheless this solution might be unsuitable because of its cost or its limited speed. The implementation might be too expensive because of the computer and too slow when implemented in software. In both cases dedicated hardware can be an interesting solution. The necessity of dedicated hardware might not imply building the hardware since in the last two decades several commercial hardware solutions that can be used in the implementation have reached the market. Unfortunately not every integrated circuit will fit the needs: some will use lower precision, some will implement only certain types of networks, some don’t have training built in and the information is not easy to find. This article is confined to reporting the commercial chips that have been developed specifically for Artificial Neural Networks, leaving out others solutions. This option has been made because most of the other solutions are based on cards which are built either with these chips, Digital Signal Processors or Reduced Instruction Set Computers. © 2003 Elsevier Science Lta. All rights reserved.
منابع مشابه
Artificial Neural Networks (ANN) for the simultaneous spectrophotometric determination of fluoxetine and sertraline in pharmaceutical formulations and biological fluid
Simultaneous spectrophotometric estimation of Fluoxetine and Sertraline in tablets were performed using UV–Vis spectroscopic and Artificial Neural Networks (ANN). Absorption spectra of two components were recorded in 200–300 (nm) wavelengths region with an interval of 1 nm. The calibration models were thoroughly evaluated at several concentration levels using the spectra of synthetic binary mix...
متن کاملArtificial Neural Networks (ANN) for the simultaneous spectrophotometric determination of fluoxetine and sertraline in pharmaceutical formulations and biological fluid
Simultaneous spectrophotometric estimation of Fluoxetine and Sertraline in tablets were performed using UV–Vis spectroscopic and Artificial Neural Networks (ANN). Absorption spectra of two components were recorded in 200–300 (nm) wavelengths region with an interval of 1 nm. The calibration models were thoroughly evaluated at several concentration levels using the spectra of synthetic binary mix...
متن کاملApplication of Artificial Neural Networks in a Two-step Classification for Acute Lymphocytic Leukemia Diagnosis by Blood Lamella Images
Introduction: This study aimed to present a system based on intelligent models that can enhance the accuracy of diagnostic systems for acute leukemia. The three parts including preprocessing, feature extraction, and classification network are considered as associated series of actions. Therefore, any dysfunction or poor accuracy in each part might lead in general dysfunction of...
متن کاملA Review of Epidemic Forecasting Using Artificial Neural Networks
Background and aims: Since accurate forecasts help inform decisions for preventive health-careintervention and epidemic control, this goal can only be achieved by making use of appropriatetechniques and methodologies. As much as forecast precision is important, methods and modelselection procedures are critical to forecast precision. This study aimed at providing an overview o...
متن کاملNeural Networks in Electric Load Forecasting:A Comprehensive Survey
Review and classification of electric load forecasting (LF) techniques based on artificial neuralnetworks (ANN) is presented. A basic ANNs architectures used in LF reviewed. A wide range of ANNoriented applications for forecasting are given in the literature. These are classified into five groups:(1) ANNs in short-term LF, (2) ANNs in mid-term LF, (3) ANNs in long-term LF, (4) Hybrid ANNs inLF,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eng. Appl. of AI
دوره 17 شماره
صفحات -
تاریخ انتشار 2004